
The Blockchain Propagation Process

Aapeli Vuorinen

May 31, 2019

1



In this talk

I What is Bitcoin?

I What are blockchains and how do they work?

I What is the blockchain propagation process?

I Why does the propagation delay matter?

2



Bitcoin

I An electronic payment system

I Created by “Satoshi Nakamoto” in 2008, implemented in
2009 in the Bitcoin reference client

I Introduced the concept of a blockchain

3



Blockchain

I A database and a protocol by which a decentralised, global
community can reach consensus on a ledger of events without
a central authority or clearing house

I Reaching consensus: coming to agreement on the state of the
ledger

I Relies heavily on cryptography

I Once the ledger has been built, it is immutable

4



Addresses: public key cryptography

I Key pair: (Private key,Public key).

I Two operations:

Sign(Data,Private key) 7→ Signature

Verify(Signature,Data,Public key) ∈ {Valid, Invalid}

I Impossible to forge signatures

I Bitcoin address: a public key

I Normally use elliptic curve cryptography: discrete logarithm
problem on a group constructed on elliptic curves over finite
fields

5



Transactions

Sign(Data,Private key) 7→ Signature

Verify(Signature,Data,Public key) ∈ {Valid, Invalid}

I A transaction: sign “Transfer x Bitcoins to account y” with
your own private key

I Anyone can verify this!

6



Double spending

I I simultaneously send Alice and Bob one Bitcoin

I Do I have enough Bitcoins for both transactions?

I If not, then which transaction is valid, i.e. occurred first?

I Need a database: blockchain

7



Blocks and the blockchain

Header

Block hash

Hash of previous block

Timestamp

Nonce

Hash of transactions

Data

TX1

TX2

TX3

TX4

...

Block n − 3 Block n − 2 Block n − 1 Block n

I A block is a bundle of transactions
I A block always refers to the last block forming a blockchain
I The miner who finds the block gets a reward
I Who gets to create the next block?

8



Cryptographic hashes

Cryptographic hash functions map any binary string into a number
and:

1. input is completely uncorrelated to output, any change in
input completely scrambles output;

2. computationally infeasible to find an input that matches any
given hash; and

3. computationally infeasible to find two inputs with the same
hash.

hash("illustration.")=5613492

hash("illustration!")=1668603

hash("illustration?")=6393172

I Output should be distributed uniformly over possible outputs!

9



Proof-of-work

I hash ∈ {0, . . . , n − 1}
I t = Threshold, controls difficulty

I Example n = 10000, t = 10:

hash("Message:Hello audience. Nonce: 1”)=1628 7

hash("Message:Hello audience. Nonce: 2”)=8445 7

hash("Message:Hello audience. Nonce: 3”)=4184 7

...
hash("Message:Hello audience. Nonce: 1084”)=9 4

I Number of hashes before success is geometrically distributed

I Expected hashes before finding one below threshold is n/t

I Probabilistic bounds on number of hashes before threshold is
reached

10



The mining process

I Bitcoin uses this proof-of-work to limit the number of blocks
mined

I Randomly selects next miner to build the next step in the
ledger

I The threshold is deterministically adjusted every 2016 blocks
to control the block arrival rate

I Bitcoin blocks arrive approximately every 10 minutes

I Miners are incentivised by a mining reward

11



Hashes in blocks and transactions

Header

Block hash

Hash of previous block

Timestamp

Nonce

Hash of transactions

Data

TX1

TX2

TX3

TX4

...

I Block is identified by its hash: changing a header field or
transaction completely scrambles the block hash

I Means contents of blocks are immutable once they are in the
chain

12



Recap

1. Create transaction object and sign it with the private key
corresponding to the Bitcoin address you’re sending from

2. Send it to the network and hope miners pick it up

3. Proof-of-work scheme randomly picks next miner

4. The miner hopefully added your transaction to that block
(ostensibly if you put a high enough “tip”)

5. The miner sends out the block to everyone on the network

6. This new block refers to the last block in the chain

7. The blockchain is advanced by one step

13



Recap

1. Create transaction object and sign it with the private key
corresponding to the Bitcoin address you’re sending from

2. Send it to the network and hope miners pick it up

3. Proof-of-work scheme randomly picks next miner

4. The miner hopefully added your transaction to that block
(ostensibly if you put a high enough “tip”)

5. The miner sends out the block to everyone on the network

6. This new block refers to the last block in the chain

7. The blockchain is advanced by one step

13



The Bitcoin network

I Servers called “nodes” running a Bitcoin client

I Each node maintains a complete copy of the blockchain

I Each node is connected to random “peers”

I Bitcoin currently has about 8000-12000 nodes

14



The block propagation process

I A miner finds a new block

I They send out the header to each of their peers

I Each of those peers check the header and forward it to their
peers, then ask for the full block

I The peers check the block by verifying transactions before
propagation it further

I The network reaches consensus when the block has
propagated to every node on the network

I Headers move faster than blocks

15



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

16



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

H

H

17



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

H

H

H

18



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

B

B

H

H

H
H

19



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

B

B

H

H

20



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

B

B

B

B

21



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

B

BB

22



Block propagation

Miner Has block Has header No information

H
Header transmission

B
Block transmission

23



Block propagation delay

I Processing: time taken to verify transactions against current
ledger

I Transmission: time taken for block to travel across wire

I Longer delay leads to longer time until consensus

I Slower transaction processing time

I Increases rate of “forks”

24



Forks

25



Forks

26



Forks

27



Forks

28



Forks

Block n − 2 Block n − 1
Block n

Block n′

I Sometimes another miner will find a block before the block
has propagated through a network

I This causes a fork in the blockchain

I Rate of forks is influenced by the propagation delay and
the block arrival rate

29



Resolution of forks

30



Resolution of forks

31



Resolution of forks

32



Resolution of forks

33



Resolution of forks

34



Resolution of forks

Block n − 2 Block n − 1
Block n

Block n′ Block n + 1

I Eventually a miner on one of the two forks finds a new block

I The whole network switches to that block and the fork is
resolved

I Nodes always switch to longest chain

35



Selfish-mine strategy

J. Göbel, H.P. Keeler, A.E. Krzesinski, and P.G. Taylor. Bitcoin
blockchain dynamics: The selfish-mine strategy in the presence of
propagation delay. Performance Evaluation, 104:23 – 41, 2016.

I Allows adversarial miners to inflate their share of mining
rewards when there is a propagation delay

36



Selfish-mine strategy

37



Selfish-mine strategy

38



Selfish-mine strategy

39



Selfish-mine strategy

40



Selfish-mine strategy

41



Selfish-mine strategy

42



My project

I Wrote code to observe Bitcoin network

I Set up a global observational experiment

I Observed parts of the propagation process of 14810 blocks

I Total 137 gigabytes data, 20.6 million messages

Northern Virginia

Northern California

Frankfurt

London

Seoul

Singapore

Mumbai

São Paulo

Sydney

43



block time node id node location peer ip peer port

000...3df98 1542887007.19418 4 London 62.152.58.16 9421

000...a7919 1543748261.60442 9 Sydney 52.198.169.28 8333

000...c9e85 1544975472.21318 1 Northern Virginia 2a01:4f8:191:4174::2 8333

000...19fca 1547242755.84717 1 Northern Virginia 47.88.192.215 8333

000...dd0e6 1547487249.97776 4 London 108.56.233.194 8333

000...3b14d 1547900706.97837 6 Singapore 117.52.98.78 8333

000...eeae7 1549261393.32542 6 Singapore 81.209.69.107 8333

000...713e3 1549319396.6256 1 Northern Virginia 144.76.5.41 8433

000...f4059 1550359795.0164 1 Northern Virginia 54.64.245.84 8333

000...f5404 1551099161.4188 1 Northern Virginia 185.186.209.210 8333

block size weight height time nonce bits nTx pool

000...048dd 1191087 3993369 550706 1542627049 1206282193 172a4e2f 1900 Slush

000...373a9 154481 534173 553369 1544510774 3681510874 1731d97c 305 Unknown

000...dd7e9 649274 2359871 555601 1545843940 4123099930 17371ef4 648 Unknown

000...84206 1283944 3993127 559626 1548178688 2688550637 172fd633 3133 AntPool

000...735ea 1262291 3993185 559645 1548188137 2421018921 172fd633 2524 BTC.com

000...10bc7 559802 1993133 562220 1549670573 2587934320 17306835 476 AntPool

000...574e1 697494 2340000 562268 1549698426 1796028615 17306835 1700 Poolin

000...16419 1288903 3993037 562793 1550026180 1918332176 172e6f88 2873 BTC.top

000...f3348 1134403 3993103 564931 1551302350 2869178554 172e5b50 2040 BTC.com

000...01cf8 1317204 3992916 565279 1551493180 1664069908 172e5b50 3273 Slush



35.30 %

8.68 %

9.38 %

10.24 %

4.00 %

10.13 % 4.03 %

9.49 %

8.74 %

Northern Virginia

Northern California

Frankfurt

London

Seoul

Singapore

Mumbai

São Paulo

Sydney



0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0



Phase-type distributions

I Markov chain {Xt}t≥0 on finite state space S = {0, . . . , p}
I Phase-type generator TTT , initial distribution πππ = (π1, . . . , πp)

I τ := inf {t ≥ 0 |Xt = 0} is phase-type, τ ∼PH(πππ,TTT )

2

4

2

1 3

3 2

0 1

TTT =

−2 0 0
3 −5 2
4 0 −5

 , πππ =

0
1
0

 .

47



Why phase-type distributions?

I Phase-type distributions are dense in set of all non-negative
distributions (under weak convergence)

I So given any non-negative distribution, we can approximate it
to arbitrary precision using phase-type distributions

48



EM-algorithm

I State of the art technique for fitting phase-type distributions

I Formulates the problem as an incomplete data problem

I Finding transition probabilities and initial distribution is very
easy if we observed the whole Markov chain

I Compute MLEs using the Expectation-Maximisation algorithm

I Improved Julia code by Patrick Laub for performing fitting
phase-types to data with this algorithm

I Use parallelisation to speed up fitting time for extremely large
datasets

49



0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p = 1

0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p = 2

0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p = 3

0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p = 4

0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p = 5

0.0 0.2 0.4 0.6 0.8 1.0

Delay in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p = 6



Recap

I Wanted to study the Bitcoin propagation process

I Created a data collection tool to observe a most of the
Bitcoin network

I Collected a large amount of data on arrival times of blocks

I Improved EM-algorithm for fitting phase-type distributions

I Fitted a phase-type distribution to some arrival difference data

51



Website

I All the data is open online!

I It’s cleaned and processed and just over 2 GB.

I Also included: thesis, code for fitting and data collection, this
presentation

I https://bitcoin.aapelivuorinen.com/

52

https://bitcoin.aapelivuorinen.com/

